Select Page
This Copyright Lawsuit Could Shape the Future of Generative AI

This Copyright Lawsuit Could Shape the Future of Generative AI

The tech industry might be reeling from a wave of layoffs, a dramatic crypto-crash, and ongoing turmoil at Twitter, but despite those clouds some investors and entrepreneurs are already eyeing a new boom—built on artificial intelligence that can generate coherent text, captivating images, and functional computer code. But that new frontier has a looming cloud of its own.

A class-action lawsuit filed in a federal court in California this month takes aim at GitHub Copilot, a powerful tool that automatically writes working code when a programmer starts typing. The coder behind the suit argue that GitHub is infringing copyright because it does not provide attribution when Copilot reproduces open-source code covered by a license requiring it.

The lawsuit is at an early stage, and its prospects are unclear because the underlying technology is novel and has not faced much legal scrutiny. But legal experts say it may have a bearing on the broader trend of generative AI tools. AI programs that generate paintings, photographs, and illustrations from a prompt, as well as text for marketing copy, are all built with algorithms trained on previous work produced by humans. 

Visual artists have been the first to question the legality and ethics of AI that incorporates existing work. Some people who make a living from their visual creativity are upset that AI art tools trained on their work can then produce new images in the same style. The Recording Industry Association of America, a music industry group, has signaled that AI-powered music generation and remixing could be a new area of copyright concern.

“This whole arc that we’re seeing right now—this generative AI space—what does it mean for these new products to be sucking up the work of these creators?” says Matthew Butterick, a designer, programmer, and lawyer who brought the lawsuit against GitHub.

Copilot is a powerful example of the creative and commercial potential of generative AI technology. The tool was created by GitHub, a subsidiary of Microsoft that hosts the code for hundreds of millions of software projects. GitHub made it by training an algorithm designed to generate code from AI startup OpenAI on the vast collection of code it stores, producing a system that can preemptively complete large pieces of code after a programmer makes a few keystrokes. A recent study by GitHub suggests that coders can complete some tasks in less than half the time normally required when using Copilot as an aid. 

But as some coders quickly noticed, Copilot will occasionally reproduce recognizable snippets of code cribbed from the millions of lines in public code repositories. The lawsuit filed by Butterick and others accuses Microsoft, GitHub, and OpenAI of infringing on copyright because this code does not include the attribution required by the open-source licenses covering that code. 

Programmers have, of course, always studied, learned from, and copied each other’s code. But not everyone is sure it is fair for AI to do the same, especially if AI can then churn out tons of valuable code itself, without respecting the source material’s license requirements. “As a technologist, I’m a huge fan of AI ,” Butterick says. “I’m looking forward to all the possibilities of these tools. But they have to be fair to everybody.”

Amazon’s New Robot Sparrow Can Handle Most Items in the Everything Store

Amazon’s New Robot Sparrow Can Handle Most Items in the Everything Store

Amazon built an ecommerce empire by automating much of the work needed to move goods and pack orders in its warehouses. There is still plenty of work for humans in those vast facilities because some tasks are too complex for robots to do reliably—but a new robot called Sparrow could shift the balance that Amazon strikes between people and machines.

Sparrow is designed to pick out items piled in shelves or bins so they can be packed into orders for shipping to customers. That’s one of the most difficult tasks in warehouse robotics because there are so many different objects, each with different shapes, textures, and malleability, that can be piled up haphazardly. Sparrow takes on that challenge by using machine learning and cameras to identify objects piled in a bin and plan how to grab one using a custom gripper with several suction tubes. Amazon demonstrated Sparrow for the first time today at the company’s robotics manufacturing facility in Massachusetts.

Amazon is currently testing Sparrow at a facility in Texas where the robot is already sorting products for customer orders. The company says Sparrow can handle 65 percent of the more than 100 million items in its inventory. Tye Brady, chief technologist at Amazon Robotics, says that range is the most impressive thing about the robot. “No one has the inventory that Amazon has,” he says. Sparrow can grasp DVDs, socks, and stuffies, but still struggles with loose or complex packaging.

Making machines capable of picking a wide range of individual objects with close to the accuracy and speed of humans could transform the economics of ecommerce. A number of robotics companies, including Berkshire Grey, Righthand Robotics, and Locus Robotics, already sell systems capable of picking objects in warehouses. Startup Covariant specializes in having robots learn how to handle items it hasn’t seen before on the job. But matching the ability of humans to handle any object reliably, and at high speed, remains out of reach for robots. A human can typically pick about 100 items per hour in a warehouse. Brady declined to say how quickly Sparrow can pick items, saying that the robot is “learning all the time.”

Automating more work inside warehouses naturally leads to thoughts of the specter of robots displacing humans. So far, the relationship between robotics and human workers in workplaces has been more complex. For instance, Amazon has increased its workforce even as it has rolled out more automation, as its business has continued to grow. The company appears sensitive to the perception that robots can disadvantage humans. At the event today the company spotlighted employees who had gone from low-level jobs to more advanced ones. However, internal data obtained by Reveal has suggested Amazon workers at more automated facilities suffer more injuries because the pace of work is faster. The company has claimed that robotics and other technology makes its facilities safer.

When asked about worker replacement, Brady said the role of robots is misunderstood. “I don’t view it as replacing people,” he said. “It’s humans and machines working together—not humans versus machines—and if I can allow people to focus on higher level tasks, that’s the win.”

Robots have become notably more capable in recent years, although it can be difficult to distinguish hype from reality. While Elon Musk and others show off futuristic humanoid robots that are many years from being useful, Amazon has quietly gone about automating a large proportion of its operations. The ecommerce company says it now manufactures more industrial robots per year than any company in the world.

Use of industrial robots is growing steadily. In October, the International Federation of Robotics reported that companies around the world installed 517,385 new robots during 2021, a 31 percent increase year-on-year, and a new record for the industry. Many of those new machines are either mobile robots that wheel around factories and warehouses carrying goods or examples of the relatively new concept of “collaborative” robots that are designed to be safe to work alongside humans. Amazon this year introduced a collaborative robot of its own called Proteus, which ferries shelves stacked with products around a warehouse, avoiding human workers as it goes.

At its event today, Amazon also demonstrated a new delivery drone, called MK30, that is capable of carrying loads of up to 5 pounds. Amazon has been testing drone delivery in Lockeford, California, and College Station, Texas, and says the new, more efficient drone will go into service in 2024. The company also showcased a new electric delivery vehicle made by Rivian that includes custom safety systems for collision warning and automatic braking, as well as a system called Fleet Edge that gathers street-view footage and GPS data to improve delivery routing.

Elon Musk Has Fired Twitter’s ‘Ethical AI’ Team

Elon Musk Has Fired Twitter’s ‘Ethical AI’ Team

As more and more problems with AI have surfaced, including biases around race, gender, and age, many tech companies have installed “ethical AI” teams ostensibly dedicated to identifying and mitigating such issues.

Twitter’s META unit was more progressive than most in publishing details of problems with the company’s AI systems, and in allowing outside researchers to probe its algorithms for new issues.

Last year, after Twitter users noticed that a photo-cropping algorithm seemed to favor white faces when choosing how to trim images, Twitter took the unusual decision to let its META unit publish details of the bias it uncovered. The group also launched one of the first ever “bias bounty” contests, which let outside researchers test the algorithm for other problems. Last October, Chowdhury’s team also published details of unintentional political bias on Twitter, showing how right-leaning news sources were, in fact, promoted more than left-leaning ones.

Many outside researchers saw the layoffs as a blow, not just for Twitter but for efforts to improve AI. “What a tragedy,” Kate Starbird, an associate professor at the University of Washington who studies online disinformation, wrote on Twitter. 

Twitter content

This content can also be viewed on the site it originates from.

“The META team was one of the only good case studies of a tech company running an AI ethics group that interacts with the public and academia with substantial credibility,” says Ali Alkhatib, director of the Center for Applied Data Ethics at the University of San Francisco.

Alkhatib says Chowdhury is incredibly well thought of within the AI ethics community and her team did genuinely valuable work holding Big Tech to account. “There aren’t many corporate ethics teams worth taking seriously,” he says. “This was one of the ones whose work I taught in classes.”

Mark Riedl, a professor studying AI at Georgia Tech, says the algorithms that Twitter and other social media giants use have a huge impact on people’s lives, and need to be studied. “Whether META had any impact inside Twitter is hard to discern from the outside, but the promise was there,” he says.

Riedl adds that letting outsiders probe Twitter’s algorithms was an important step toward more transparency and understanding of issues around AI. “They were becoming a watchdog that could help the rest of us understand how AI was affecting us,” he says. “The researchers at META had outstanding credentials with long histories of studying AI for social good.”

As for Musk’s idea of open-sourcing the Twitter algorithm, the reality would be far more complicated. There are many different algorithms that affect the way information is surfaced, and it’s challenging to understand them without the real time data they are being fed in terms of tweets, views, and likes.

The idea that there is one algorithm with explicit political leaning might oversimplify a system that can harbor more insidious biases and problems. Uncovering these is precisely the kind of work that Twitter’s META group was doing. “There aren’t many groups that rigorously study their own algorithms’ biases and errors,” says Alkhatib at the University of San Francisco. “META did that.” And now, it doesn’t.

Elon Musk’s Half-Baked Robot Is a Clunky First Step

Elon Musk’s Half-Baked Robot Is a Clunky First Step

Some robot experts watching saw a project that appeared to be quickly getting up to speed. “There’s nothing fundamentally groundbreaking, but they are doing cool stuff,” says Stefanie Tellex, an assistant professor at Brown University.

Henrik Christensen, who researches robotics and AI at UC Davis, calls Tesla’s homegrown humanoid “a good initial design,” but adds that the company hasn’t shown evidence it can perform basic navigation, grasping, or manipulation. Jessy Grizzle, a professor at the University of Michigan’s robotics lab who works on legged robots, said that although still early, Tesla’s project appeared to be progressing well. “To go from a man in a suit to real hardware in 13 months is pretty incredible,” he says.

Grizzle says Tesla’s car-making experience and expertise in areas such as batteries and electric motors may help it advance robotic hardware. Musk claimed during the event that the robot would eventually cost around $20,000—an astonishing figure given the project’s ambition and significantly cheaper than any Tesla vehicle—but offered no timeframe for its launch.

Musk was also vague about who his customers would be, or which uses Tesla might find for a humanoid in its own operations. A robot capable of advanced manipulation could perhaps be important for manufacturing, taking on parts of car-making that have not been automated, such as feeding wires through a dashboard or carefully working with flexible plastic parts.

In an industry where profits are razor-thin and other companies are offering electric vehicles that compete with Tesla’s, any edge in manufacturing could prove crucial. But companies have been trying to automate these tasks for many years without much success. And a four-limbed design may not make much sense for such applications. Alexander Kernbaum, interim director of SRI Robotics, a research institute that has previously developed a humanoid robot, says it only really makes sense for robots to walk on legs in very complex environments. “A focus on legs is more of an indication that they are looking to capture people’s imaginations rather than solve real-world problems,” he says.

Grizzle and Christensen both say they will be watching future Tesla demonstrations for signs of progress, especially for evidence of the robot’s manipulation skills. Staying balanced on two legs while lifting and moving an object is natural for humans but challenging to engineer in machines. “When you don’t know the mass of an object, you have to stabilize your body plus whatever you’re holding as you carry it and move it, Grizzle says.

Wise will be watching, too, and despite being underwhelmed so far, he hopes the project doesn’t flounder like Google’s ill-fated robotic company acquiring spree back in 2013, which sucked many researchers into projects that never saw the light of day. The search giant’s splurge included two companies working on humanoids: Boston Dynamics, which it sold off in 2017, and Schaft, which it shut down in 2018. “These projects keep getting killed because, lo and behold, they wake up one day and they realize robotics is hard,” Wise says.

To Fix Tech, Democracy Needs to Grow Up

To Fix Tech, Democracy Needs to Grow Up

There isn’t much we can agree on these days. But two sweeping statements that might garner broad support are “We need to fix technology” and “We need to fix democracy.”

There is growing recognition that rapid technology development is producing society-scale risks: state and private surveillance, widespread labor automation, ascending monopoly and oligopoly power, stagnant productivity growth, algorithmic discrimination, and the catastrophic risks posed by advances in fields like AI and biotechnology. Less often discussed, but in my view no less important, is the loss of potential advances that lack short-term or market-legible benefits. These include vaccine development for emerging diseases and open source platforms for basic digital affordances like identity and communication.

At the same time, as democracies falter in the face of complex global challenges, citizens (and increasingly, elected leaders) around the world are losing trust in democratic processes and are being swayed by autocratic alternatives. Nation-state democracies are, to varying degrees, beset by gridlock and hyper-partisanship, little accountability to the popular will, inefficiency, flagging state capacity, inability to keep up with emerging technologies, and corporate capture. While smaller-scale democratic experiments are growing, locally and globally, they remain far too fractured to handle consequential governance decisions at scale.

This puts us in a bind. Clearly, we could be doing a better job directing the development of technology towards collective human flourishing—in fact, this may be one of the greatest challenges of our time. If actually existing democracy is so riddled with flaws, it doesn’t seem up to the task. This is what rings hollow in many calls to “democratize technology”: Given the litany of complaints, why subject one seemingly broken system to governance by another?

At the same time, as we deal with everything from surveillance to space travel, we desperately need ways to collectively negotiate complex value trade-offs with global consequences, and ways to share in their benefits. This definitely seems like a job for democracy, albeit a much better iteration. So how can we radically update democracy so that we can successfully navigate toward long-term, shared positive outcomes?

The Case for Collective Intelligence

To answer these questions, we must realize that our current forms of democracy are only early and highly imperfect manifestations of collective intelligence—coordination systems that incorporate and process decentralized, agentic, and meaningful decisionmaking across individuals and communities to produce best-case decisions for the collective.

Collective intelligence, or CI, is not the purview of humans alone. Networks of trees, enabled by mycelia, can exhibit intelligent characteristics, sharing nutrients and sending out distress signals about drought or insect attacks. Bees and ants manifest swarm intelligence through complex processes of selection, deliberation, and consensus, using the vocabulary of physical movement and pheromones. In fact, humans are not even the only animals that vote. African wild dogs, when deciding whether to move locations, will engage in a bout of sneezing to determine whether quorum has been reached, with the tipping point determined by context—for example, lower-ranked individuals require a minimum of 10 sneezes to achieve what a higher-ranked individual could get with only three. Buffaloes, baboons, and meerkats also make decisions via quorum, with flexible “rules” based on behavior and negotiation. 

But humans, unlike meerkats or ants, don’t have to rely on the pathways to CI that our biology has hard-coded into us, or wait until the slow, invisible hand of evolution tweaks our processes. We can do better on purpose, recognizing that progress and participation don’t have to trade off. (This is the thesis on which my organization, the Collective Intelligence Project, is predicated.)

Our stepwise innovations in CI systems—such as representative, nation-state democracy, capitalist and noncapitalist markets, and bureaucratic technocracy—have already shaped the modern world. And yet, we can do much better. These existing manifestations of collective intelligence are only crude versions of the structures we could build to make better collective decisions over collective resources.