Select Page
Fleeing Disaster Is Hard. Climate Change Is Making It Harder

Fleeing Disaster Is Hard. Climate Change Is Making It Harder

(This is not to say that fire agencies like Calfire aren’t supremely good at what they do. The successful evacuation of South Lake Tahoe is a testament to that: over 20,000 people made it out, long before the fire reached the edge of town.)

Image may contain: Universe, Space, Astronomy, Outer Space, Planet, Night, Outdoors, Moon, and Nature

The WIRED Guide to Climate Change

The world is getting warmer, the weather is getting worse. Here’s everything you need to know about what humans can do to stop wrecking the planet.

As with fires, one of the factors driving hurricanes is heat. “Coastal waters are warming up significantly,” says Misra, of Florida State University. When Hurricane Ida moved over the Gulf of Mexico, it fed on abnormally warm water, which resulted in ferocious winds just as the storm was making landfall. 

Hurricanes are complex phenomena, of course, so there are other factors at play, like the state of the atmosphere at a given time. Scientists need more data to fully understand the trend towards the rapid intensification. Warmer water, says Misra, “does not necessarily mean that all storms that make landfall will eventually end up being stronger than the current storms. But that should certainly ring an alarm bell.”

So, too, should the fact that a warmer atmosphere holds more moisture. “Under the right conditions, when convection occurs, then it is going to squeeze more moisture out from the same volume of air in a future warm climate than the current climate,” says Misra. “So the threat of the tropical cyclone—whether it rapidly intensifies or not more frequently in the future—is going to be far more, with more rain coming out.” A hurricane’s winds weaken once it makes landfall, since it’s no longer feeding on warm gulf waters. But it still continues to dump rain as it moves inland, which could lead to devastating flooding throughout the southern and eastern states.

Hurricane forecasters can accurately predict the path of a storm days ahead of time, providing state and local governments with invaluable data to inform evacuations; these models work, and they save countless lives. But climate change is going to create new challenges for modeling, as it changes how hurricanes behave. “Most of our weather prediction models don’t do a great job of forecasting rapid intensification,” says Misra. “So that in itself is a huge problem for preparing to mitigate the impact of the hurricane.” 

The extreme ferocity of today’s natural disasters is also making it harder for citizens to parse their own risk. “People set expectations based on their prior experiences, and this stuff is outside of people’s experiences,” says Ann Bostrom, a risk communication researcher at the University of Washington. “A hurricane or wildfire ramping up to greater intensity is faster than people have experienced.” Someone who might have safely stayed home during one of these disasters 20 years ago—either because they refused to leave or didn’t have the means to—may well find themself in extreme peril today.

While rapid hurricane intensification is a danger for everyone, it’s the worst for people who don’t have the resources to get out quickly. “A lot of the people who are living right along the coast are either extremely wealthy or extremely poor,” says Kyle Burke Pfeiffer, director of the National Preparedness Analytics Center at the Argonne National Laboratory. And for the poor, he continues, “maybe they don’t have access to a vehicle, or maybe don’t have the funds or the ability to leave their job or their home. And, many times, they’re living in structures that are not engineered to sustain the external loads placed upon them by various hazards, such as hurricanes.”

California has a similar problem: Astronomical housing prices along the coast have pushed more people east into the state’s wildland urban interface, where cities meet the forest. Paradise is one such town, as is South Lake Tahoe. “With more people out in these areas—and the fact that [the areas are] drier—leads to more ignitions near communities,” says Cova, of the University of Utah. So fires tend to start closer to town and move faster. “That affects the evacuations, because the time available can be below what you need, like it was in Paradise.” Retirees, in particular, are flocking to these places, but any older residents who have mobility problems will find it more difficult to evacuate as a fire approaches. 

Nothing Can Eat Australia’s Cane Toads—So They Eat Each Other

Nothing Can Eat Australia’s Cane Toads—So They Eat Each Other

The cane toad may be the poster animal for invasive species. Native to South America, it has been introduced to many other ecosystems in the hope it would chow down on agricultural pests. Instead, the toad has become a pest itself, most notably in Australia. Free from the predators and parasites in its native range, the toad’s poison glands have turned out to be a hazard for most species that try to eat it where it has been introduced.

But that doesn’t mean that it’s completely free of the risk of predation. Australian cane toad tadpoles have been observed feeding on their fellow cane toad offspring. This cannibalism seems to be an evolutionary response to the lack of competing species in its invasive range, causing cane toads to turn on their remaining competition: each other. And the toad has already turned to an additional evolutionary response to try to limit the danger of cannibalism.

Only Competing With Themselves

From an evolutionary perspective, cannibalism can make sense as a way to limit the competition posed by other members of your species. But the research team at the University of Sydney that has tracked the cane toad’s cannibalism suggests that the species’ successful invasion of Australia has accentuated this evolutionary pressure—something that may also occur with other invasive predators. One of the marks of an invasive species is its abundance in its new range, at which point competition for limited resources becomes more likely. Cannibalism not only limits this competition but provides nutritional resources as well.

With the Australian population reaching about 10 times the density of the population in the cane toad’s native range, there’s plenty of opportunity for inter-toad competition. And that competition has been documented at early stages in the toad’s development. Recently hatched toads spend several days developing into tadpoles and, during this time, often get eaten by older, more mature tadpoles. In a heavily populated body of water, clutches of eggs laid after mature tadpoles are present may be completely wiped out before they can live past the hatchling stage.

Tadpoles eating tadpoles can occur in South America. But it happens much more often in Australia. So the researchers decided to see if cannibalism was producing biological differences between the native and invasive populations.

To do so, they obtained toads from both native and invasive populations and tracked the behavior of the offspring. To start, the researchers simply placed fertilized eggs in a container with a single tadpole. This showed that the Australian cane toads had become aggressive cannibals, as eggs placed in with them were over 2.5 times more likely to be cannibalized before producing a tadpole.

While many changes can produce this sort of difference, the researchers demonstrated that the Australian tadpoles were more likely to seek out recently hatched cane toads. When given a choice of moving into empty containers and one containing cane toad hatchlings, the invasive Australian toads were nearly 30 times more likely to go into the container with hatchlings.

By the time the hatchlings reach the tadpole stage and are too large to eat, their fellow tadpoles lose interest. There’s some indication that the earlier attraction is based on toxins put into the fertilized egg by the mother.

The Best Defense

High levels of predation tend to produce evolutionary responses to limit vulnerability, and cannibalism is no different. The researchers found that Australian toads were simply spending less of their developmental time in the vulnerable hatchling stage in order to avoid some of the impact of cannibalism.

This occurred via two different mechanisms. One of these was specifically dependent upon the presence of tadpoles. In other words, when the threat was present, development accelerated. But a separate acceleration was present regardless of whether tadpoles were present. While South American cane toads spent a total of about five days at the hatchling stage, Australian populations only spent three days. So the pressure of cannibalism had cut hatchling development time by nearly half.

The Miami Tower Collapse and Humanity’s Fight for the Future

The Miami Tower Collapse and Humanity’s Fight for the Future

In 2014, a team of behavioral scientists from Harvard and Yale tried to save the future—with a little game theory.

Here’s the game part: The researchers broke up a big group of volunteers into five teams they called “generations.” They gave the players designated the first generation 100 points, or “units,” and told them to take some for themselves, up to 20 units each, and then pass the remainder on to the next generation. If the overall pool had 50 units or more at the end of the round, the next generation would get a reset—100 units to start all over, a model of sustainability. If the pool had fewer than 50 units, the next generation got what it got.

Do you want the good news or the bad news? The good: Two-thirds of players were “cooperators,” taking 10 units or fewer and ensuring the survival of the species. The bad: A minority of “defectors” always tanked the game. In 18 rounds of this Intergenerational Goods Game, just four had a first generation abstemious enough to give generation 2 a full reset to 100 units. Of those, only two reset for generation 3. Nobody made it to generation 4.

In a game designed to test how people might plan ahead for a sustainable world, all it took to reliably bring about the apocalypse were a few selfish schmucks—which sounds pretty familiar, actually, but does seem like a ruefully ironic outcome for a paper called “Cooperating With the Future.”

That wasn’t the end of the story for the Intergenerational Goods Game. (I’ll come back to that.) But this past week has highlighted the pathetic human inability to avoid bad outcomes in a possible future. You can see that in the horrifying collapse of a condominium tower in Surfside, north of Miami Beach, which killed at least 16 people and has left dozens more still unaccounted for. An engineer warned the building’s residents in 2018 about serious damage to the concrete and rebar holding the building up. As recently as last April, the condo board was telling residents that the damage was worsening. But the multimillion-dollar project to fix it—in the works for more than two years—hadn’t yet begun. The Champlain Towers residents of two years ago worried, reasonably, about the impact of the repairs and how much they would cost. The International Goods Game showed how bad people are at protecting future generations; in Miami, people couldn’t even protect their own future selves.

The Intergenerational Goods Game wasn’t about buildings. It was, obviously, a ludic analysis of climate change. By 2014, plenty of people had worked on the game theory of cooperation, the authors wrote, but that canon tends to ignore the fourth dimension—time. That’s where the Champlain Towers collapse overlaps with the game, and with the climate catastrophe unfolding around the world today. Hazards are the risks that bad things will happen—an earthquake, a wildfire, a hurricane, a heat event; disasters are what happens when the risk comes to fruition and overwhelms whatever preparations people made in advance. And it turns out people are very bad at making preparations in advance. The hazard at Champlain Towers was clear—to some of the residents, at least. As with climate change, the hazard showed up long before the disaster that it made almost inevitable. It might seem almost impossibly on the nose that a deadly metaphor for how people think (or fail to think) about Earth’s broken climate would manifest in sinking, flooding Miami—a city that is, itself, a tragic metaphor for how people fail to think about Earth’s broken climate. But here we are.

24,000 Years in Ice Still Didn’t Kill These Ancient Critters

24,000 Years in Ice Still Didn’t Kill These Ancient Critters

Rotifers are microscopic freshwater-dwelling multicellular organisms. They’re already known to withstand freezing (even in liquid nitrogen), boiling, desiccation, and radiation, and the group has persisted for millions of years without having sex. The humble yet remarkably hardy bdelloid rotifer has now surprised researchers yet again—a recent study unearthed 24,000-year-old Siberian permafrost and found living (or at least revivable) rotifers there. Surviving 24,000 years in a deep freeze is a new record for the species.

Rotifers aren’t the only living organisms to emerge from permafrost or ice. The same researchers behind this latest discovery had previously found roughly 40,000-year-old viable roundworms in the region’s permafrost. Ancient moss, seeds, viruses, and bacteria have all shown impressive longevity on ice, prompting legitimate concern about whether any potentially harmful pathogens may also be released as glaciers and permafrost melt.

Given that bdelloids are generally only a threat to bacteria, algae, and detritus, however, there’s not much need for concern regarding this particular discovery. But as key players in the bottom of the food chain, newly reemerged rotifers indicate that maybe we should think about how species that haven’t been seen for millennia might reintegrate into modern ecosystems.

The Soil Cryology Lab in Pushchino, Russia, has been digging up Siberian permafrost in search of ancient organisms for roughly a decade. The group estimates the age of the organisms it finds by radiocarbon dating the surrounding soil samples (evidence has shown that there is no vertical movement through layers of permafrost). For example, last year, the researchers reported a “frozen zoo” of 35 viable protists (nucleus-containing organisms that are neither animal, plant, nor fungus) that they calculated ranged from hundreds to tens of thousands of years old.

In their most recent discovery, the cryology researchers found the living bdelloids after culturing the soil samples for about one month. Among rotifer classes, bdelloids have the fairly unusual ability to reproduce parthenogenetically—i.e., by cloning—and so the original specimens had already begun to do so. Although the clones made identifying the ancient parent challenging, this did greatly facilitate further investigation of the characteristics and behavior of the unfrozen strain.

Throughout all of the above permafrost studies, there is always the concern of sample contamination by modern-day organisms. Besides using techniques designed to prevent this, the team also addressed this issue by looking at the DNA present in the soil samples, confirming that contamination was highly unlikely. Phylogenetic analysis furthermore showed that the species didn’t match any known modern rotifers, although there is a closely related species found in Belgium.

The team was naturally interested in better understanding the freezing process and gaining insight into just how these rotifers survived for so long. As a first step, the researchers subsequently froze a selection of the cloned rotifers at -15° C for one week and captured videos of the rotifers reviving.

The researchers found that not all of the clones survived. Surprisingly, the clones generally weren’t much more freeze-tolerant than contemporary rotifers from Iceland, Alaska, Europe, North America, and even the Asian and African tropics. They were a little more freeze-tolerant than their closest genetic relative, but the difference was marginal.

The researchers did find that the rotifers could survive a relatively slow freezing process ( around 45 minutes). This is noteworthy because it was gradual enough that ice crystals formed inside of the animals’ cells—a development that is usually catastrophic for living organisms. In fact, protective mechanisms against this are highly sought after by anyone in the business of cryopreservation, making this latest finding especially enticing from that perspective.

Although the authors aren’t quite in that business, they do plan additional experiments to better understand cryptobiosis—the state of almost completely arrested metabolism that made the rotifers’ survival possible. As for research into cryopreservation of larger organisms, the authors suggest that this becomes trickier as the organism in question becomes more complex. That said, rotifers are among the most complicated cryopreserved species so far—complete with organs such as a brain and a gut.

Climate Change Is Erasing Humanity’s Oldest Art

Climate Change Is Erasing Humanity’s Oldest Art

The limestone caves and rock shelters of Indonesia’s southern Sulawesi island hold the oldest traces of human art and storytelling, dating back more than 40,000 years. Paintings adorn the walls of at least 300 sites in the karst hills of Maros-Pangkep, with more almost certainly waiting to be rediscovered. But archaeologists say humanity’s oldest art is crumbling before their very eyes.

“We have recorded rapid loss of hand-sized spall flakes from these ancient art panels over a single season (less than five months),” said archaeologist Rustan Lebe of Makassar’s culture heritage department.

The culprit is salt. As water flows through a limestone cave system, it carries minerals from the local bedrock, and the minerals eventually end up in the limestone. At the limestone’s surface, those minerals oxidize into a case-hardened rocky crust. Nearly all of the oldest rock art in Maros-Pangkep—like the oldest drawing in the world that depicts an actual object—is painted in red or mulberry-purple pigment on that hard outer layer. The rock is resistant to most weathering, providing a durable canvas for humanity’s oldest artwork.

But beneath the surface, trouble is brewing. Flowing water deposits minerals in the void spaces beneath the mineralized outer crust, and some of those minerals crystallize into mineral salts. As those crystals form, grow, and shrink, they push against the outer layer of mineralized limestone. Eventually, the rocky canvas where people first drew images of their world 40,000 years ago falls apart in hand-sized flakes.

To help understand the extent of the problem and confirm that salt is to blame, Griffith University archaeologist Jillian Huntley and her colleagues collected flakes from the walls and ceilings of 11 caves in the area, including Leang Timpuseng, home of the oldest hand stencil. They found mineral salts like halite and calcium sulfate on the back sides of flakes from three of the sites. And all 11 sites showed high levels of sulfur, which is a key ingredient in many of the destructive salts that worry rock-art conservators.

Exfoliation isn’t a new process, but archaeologists and site custodians in Maros-Pangkep say they have watched the process speed up over the last few decades. Some of the local people who manage and protect the rock-art sites have done so for generations, and they report “more panel loss from exfoliation over recent decades than at any other time in living memory,” wrote Huntley and her colleagues.

That’s no coincidence, according to Huntley and her colleagues.

Here’s how the process works: heavy monsoon rains drench Indonesia and the surrounding region from November to March, leaving behind water in cave systems, flooded rice fields, and brackish aquaculture ponds along the coast. The water carries a load of dissolved salts and their mineral ingredients—things like table salt or halite, along with gypsum, sodium sulfate, magnesium sulfate, and calcium chloride.

When the water begins to evaporate, the salt it carried stays behind as crystals, which expand and contract along with changes in temperature and humidity. Some geological salts, like the ones mentioned above, can expand up to three times their original size when heated, and they can put an impressive amount of pressure on the surrounding rock. The result is similar to the freeze-thaw cycles that enable water ice to crack rocks and concrete.

The whole cycle is more active and more pronounced when temperatures rise and the local weather swings from extremely wet to extremely dry every few months. And that’s precisely the conditions Indonesia is experiencing as the climate gets warmer and extreme weather events become more frequent. More and more over the last few decades, severe monsoon flooding is followed by periods of intense drought.

People struggle, rocks crack, and a little more of humanity’s deepest connection to itself fades away.

“We are in a race against time,” said rock-art expert Adhi Agus Oktaviana of Indonesia’s National Research Center for Archaeology (ARKENAS). “Our teams continue to survey the area, finding new artworks every year. Almost without exception, the paintings are exfoliating and in advanced stages of decay.”